Codeofchina.com is in charge of this English translation. In case of any doubt about the English translation, the Chinese original shall be considered authoritative.
GB/T 10230 consists of the following two parts under the general title Tap-changer:
——Part 1: Performance requirements and test methods;
——Part 2: Application guide.
This part is Part 1 of GB/T 10230.
This part is developed in accordance with the rules given in GB/T 1.1-2009.
This part replaces GB/T 10230.1-2009 Tap-changers - Part 1: Performance requirements and test methods and the following main technical changes have been made with respect to GB/T 10230.1-2007:
——The terms and definitions of vacuum type on-load tap-changer and no arcing on-load tap-changer are added (see clause 3);
——The load test requirements and test methods for vacuum type on-load tap-changer are added (see clause 5);
——The partial discharge test requirements and test methods for tap-changers are modified (see clauses 5 and 7);
——The insulation withstand voltage test values in Tables 3 and 5 are adjusted (see clauses 5 and 7).
This part is modified in relation to IEC 60214-1: 2014 Tap-changers - Part 1: Performance requirements and test methods.
This part includes technical changes with respect to IEC 60214-1:2014. The clauses and subclauses concerned are identified by a vertical single line (|) located in the blank on its external margin of the page. These technical changes and reasons are listed in Annex A.
The following editorial changes have been made in this part:
——3.5 in IEC is adjusted as 3.6 in this part, and the contents of the note are adjusted.
——3.6 in IEC is adjusted as 3.7 in this part, and the contents of the note are adjusted;
——The Note 3 in IEC, Table 1 is deleted;
——The "Note 2: It is unnecessary to subject the tap-changer without separate liquid compartment or gas compartment to tightness test” is added in 5.2.1;
——The "Note 3: Reference may be made to GB/T 14048.1 and GB/T 7251.1 for the selection of test leads” is added in 5.2.2;
——The "Note: The short-circuit current multiple of the on-load tap-changers for distribution transformer is the reciprocal of the short-circuit impedance of the distribution transformer” is added in 5.2.4;
——Table 3 in IEC, 5.2.8.1 is moved to 5.2.8.3;
——"Note: see Annex H for working principle and characteristics of arcing-free tap-changer" is added in 5.2.9;
——The content of note in IEC, 6.1.12 is deleted;
——The second paragraph in IEC, 6.2.1 is changed from the text to the content of the note;
——The "Note: The short-circuit current multiple of the de-energized tap-changers for distribution transformer is the reciprocal of the short-circuit impedance of the distribution transformer” is added in 7.2.3;
——7.3.2 and 7.3.2 of IEC are adjusted as 7.3.2 and 7.3.3 of this part;
—— In 8.2.1, the second paragraph of IEC is changed from text to note; and "Note: See Annex J for the technical requirements of controller (or display)” is added;
——Annexes A, B, C, D, and E of IEC are adjusted as Annexes B, C, F, E (with E.4 compensation method and E.5 resonance method added) and D respectively, and Annex G to Annex J are added;
——The bibliography is readjusted.
This part was proposed by China Electrical Equipment Industry Association.
This part is under the jurisdiction of SAC/TC 44 National Technical Committee on Transformers of Standardization Administration of China.
The previous edition of this part are as follows:
——GB 10230.1-1988 and GB/T 10230.1-2007.
Tap-changers -
Part 1: Performance requirements and test methods
1 Scope
This part of GB/T 10230 specifies the terms and definitions, service conditions, technical requirements for on-load tap-changers, technical requirements for motor-drive mechanisms for on-load tap-changers, technical requirements for de-energized tap-changers, technical requirements for motor-drive mechanisms for de-energized tap-changers, nameplates, de-energized tap-changer warning label, and manufacturers operating instructions.
This part applies to on-load tap-changers of both resistor and reactor types, de-energized tap-changers, and their motor-drive mechanisms.
This part applies to tap-changers immersed in mineral insulating oil according to GB 2536 but may also be used for tap-changers with air or gas insulation or immersed in other insulating liquids insofar as conditions are applicable.
This part applies mainly to on-load tap-changers with arcing contacts but may also be used for no arcing on-load tap-changers (such as electronic switching) insofar as conditions are applicable.
This part applies to the tap-changers for power and distribution transformers of all types and also to reactors.
This part does not apply to tap-changers for traction transformers and traction reactors, and capacity-regulating tap-changers for capacity-regulating transformers.
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
GB/T 1094.7 Power transformers - Part 7: Loading guide for oil-immersed power transformers (GB/T 1094.7-2008; IEC 60076-7: 2005, MOD)
GB 2536 Fluids for electrotechnical applications - Unused mineral insulating oils for transformers and switchgear (GB 2536-2011; IEC 60296: 2003, MOD)
GB/T 2900.95 Electrotechnical terminology - transformers,voltage regulators and reactors (GB/T 2900.95-2015; IEC 60050-421: 1990, NEQ)
GB/T 4109 Insulated bushings for alternating voltages above 1,000V (GB/T 4109-2008; IEC 60137 Ed.6.0, MOD)
GB/T 4208 Degrees of protection provided by enclosure(IP code) (GB/T 4208-2017; IEC 60529: 2013, IDT)
GB/T 7354 High-voltage test techniques - Partial discharge measurements (GB/T 7354-2018; IEC 60270: 2000, MOD)
GB/T 10230.2 Tap-changers - Part 2: Application guide (GB/T 10230.2-2007; IEC 60214-2: 2004, MOD)
GB/T 16927.1 High-voltage test techniques - Part 1: General definitions and test requirements (GB/T 16927.1-2011; IEC 60060-1: 2010, MOD)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in GB/T 2900.95 and the following apply.
3.1
on-load tap-changer; OLTC
device for changing the tap connections of a winding, suitable for operation while the transformer is energized or on load
Note: On-load tap-changers are sometimes called load tap-changers (LTC).
3.2
non-vacuum type on-load tap-changer
on-load tap-changer with contacts that break and make the load and circulating currents and where the arcing takes place in a liquid or gas, the tap-changer itself being placed in liquid or gas
This definition does not apply to no arcing on-load tap-changers.
3.3
vacuum type on-load tap-changer
on-load tap-changer where vacuum interrupters (vacuum tube) break and make the load and circulating currents, the tap-changer itself being placed in a different medium such as liquid or gas
?
3.4
no arcing on-load tap-changer
on-load tap-changer without generation of arcing when breaking and making the load and circulating currents (such as electronic type or thyristor mechanical hybrid type), the tap-changer itself being placed in a different medium such as liquid or gas
3.5
tap selector
device designed to carry, but not to make or break, current, used in conjunction with a diverter switch to select tap connections
3.6
diverter switch
switching device used in conjunction with a tap selector to carry, make and break currents in circuits which have already been selected
Note: The tap-changer composed of diverter switch and tap selector is also called combined on-load tap-changer.
3.7
selector switch
switching device capable of carrying, making and breaking current, combining the duties of a tap selector and a diverter switch
Notes:
1 In non-vacuum type selector switches the selection of tap connections (tap selector duty) and the diversion of the through-current (diverter switch duty) are carried out by the same contacts.
2 In vacuum type selector switches the selection of tap connections (tap selector duty) and the diversion of the through-current (diverter switch duty) are carried out by different contacts.
3 Selector switches are also called compound on-load tap-changers.
?
3.8
de-energized tap-changer; DETC
device for changing the tap connections of a winding, suitable for operation only while the transformer is de-energized
Notes:
1 DETC are sometimes called OCTC.
2 DETC are sometimes abbreviated as DTC。
3.9
change-over selector
device designed to carry, but not to make or break, current, used in conjunction with the tap selector or selector switch to enable its contacts and the connected taps to be used more than once when moving from one extreme position to the other
3.10
coarse change-over selector
change-over selector connecting the tap winding to either the main winding or the coarse winding or parts thereof
3.11
reversing change-over selector
change-over selector connecting either end of the tap winding to the main winding
3.12
transition impedance
resistor or reactor consisting of one or more units bridging the tap in use and the tap next to be used, for the purpose of transferring load from one tap to the other without interruption or appreciable change in the load current, at the same time limiting the circulating current for the period that both taps are used
?
Note: For reactor type tap-changers, the transition impedance (reactor) is commonly called a preventive auto transformer. Reactor type tap-changers normally use the bridging position as a service position (mid-point or centre tapped reactor tap-changers) and, therefore, the reactor is designed for continuous operation.
3.13
preventive auto transformer
auto transformer (or centre tapped reactor) used in on-load tap-changing and regulating transformers, or step voltage regulators to limit the circulating current when operating on a position in which two adjacent taps are bridged, or during the change of tap between adjacent positions
3.14
equalizer winding
winding on the same magnetic circuit as the excitation and tap winding of a reactor type regulating transformer with approximately half the number of turns of each tap section
3.15
drive mechanism
means by which the drive to the tap-changer is actuated
Note: The mechanism may include an independent means of storing energy to control the operation.
3.16
set of contacts
pair of individual fixed and moving contacts or a combination of such pairs operating substantially simultaneously
3.17
diverter switch and selector switch main contacts (resistor type tap-changer)
set of through-current carrying contacts which usually by-passes the main switching contact and only commutates any current (sparking often occurs)
?
3.18
diverter switch and selector switch main switching contacts (resistor type tap-changer)
set of contacts which has no transition resistor between the transformer winding and the contacts and makes and breaks current (arcing will occur)
Note: In case of vacuum type tap-changers, these contact systems are replaced by vacuum interrupters (vacuum tube).
3.19
diverter switch and selector switch transition contacts (resistor type tap-changer)
set of contacts which is connected in series with a transition resistor and makes or breaks current (arcing will occur)
Note: In case of vacuum type tap-changers, these contact systems are replaced by vacuum interrupters (vacuum tube).
3.20
transfer contacts (reactor type tap-changer)
set of contacts that makes or breaks current
Note: Where by-pass contacts are not provided, the transfer contact is a continuous current-carrying contact.
3.21
by-pass contacts (reactor type tap-changer)
set of through-current carrying contacts that commutates the current to the transfer contacts without any arc (sparking may occur)
3.22
bridging position
position of a reactor type tap-changer with the selector and transfer contacts being on two adjacent taps and with the output terminal being electrically in the middle between two adjacent taps
3.23
non-bridging position
position of a reactor type tap-changer with the selector and transfer contacts being on the same tap
3.24
circulating current
that part of the current that flows through the transition impedance at the time when two taps are momentarily bridged during a tap-change operation for a resistor type tap-changer or when bridged in an operating position for a reactor type tap-changer
Note: The circulating current is due to the voltage difference between the taps.
3.25
switched current
prospective current to be broken during switching operation by each set of main switching or transition contacts (resistor type tap-changer) or transfer contacts (reactor type tap-changer) incorporated in the diverter switch or the selector switch
3.26
recovery voltage
power-frequency voltage which appears across each set of main switching or transition contacts (resistor type tap-changer) or transfer contacts (reactor type tap-changer) of the diverter switch or selector switch after these contacts have broken the switched current
3.27
tap-change operation
complete sequence of events from the initiation to the completion of a tap-change from one service tap position to an adjacent position
?
3.28
cycle of operation
movement of the tap-changer from one end of its range to the other end and then return to its original position
3.29
rated insulation level
withstand values of the impulse and applied voltages to earth, and where appropriate between earth and phase, and between those parts where insulation is required
3.30
rated through-current
Ir
current flowing through a tap-changer towards the external circuit, which the apparatus is capable of transferring from one tap to the other at the relevant rated step voltage and which can be carried continuously while meeting the requirements of this part
3.31
maximum rated through-current
Irm
highest rated through-current for which the tap-changer is designed for and all the current related tests are based on
3.32
rated step voltage
Uir
for each value of rated through-current, the highest permissible voltage between terminals which are intended to be connected to successive taps of the transformer
?
3.33
relevant rated step voltage
highest step voltage permitted in connection with a given rated through-current
3.34
maximum rated step voltage
Uirm
highest value of the rated step voltage for which the tap-changer is designed
3.35
rated frequency
frequency of the alternating current for which the tap-changer is designed
3.36
number of inherent tap positions
highest number of tap positions for half a cycle of operation for which a tap-changer can be used according to its design
Note: The term “tap positions” is generally given as the ± value of the relevant number, for example, ±11 positions. They are in principle also valid for the motor-driven mechanism. When using a “number of tap positions” in connection with a transformer, this always refers to the number of service tap positions of the transformer.
3.37
number of service tap positions
number of tap positions for half a cycle of operation for which a tap-changer is used in the transformer
Note: The term “tap positions” is generally given as the ± value of the relevant number, for example, ±11 positions. They are in principle also valid for the motor-driven mechanism. When using a “number of tap positions” in connection with a transformer, this always refers to the number of service tap positions of the transformer.
3.38
type test
test made on a tap-changer which is representative of other tap-changers, to demonstrate that these tap-changers comply with the specified requirements not covered by the routine tests: a tap-changer is considered to be representative of others if it is built to the same drawings using the same techniques and same materials
Notes:
1 In general a type test can be carried out on a tap-changer or the components of a tap-changer or a family of tap-changers or components.
2 A family of tap-changers is a number of tap-changers based on the same design and having the same characteristics, with the exception of the insulation levels to earth and possibly between phases, the number of steps and in the case of OLTCs the value of the transition impedance.
3 Design variations that are clearly irrelevant to a particular type test would not require that type test to be repeated.
4 Design variations that cause a reduction in values and stresses relevant to a particular type test do not require a particular type test if accepted by the purchaser and the manufacturer.
3.39
routine test
test to which each individual tap-changer is subjected
Note: In general a routine test can be carried out on a tap-changer or the components of a tap-changer.
3.40
motor-drive mechanism
driving mechanism which incorporates an electric motor and a control circuit
3.41
step-by-step control of a motor-drive mechanism
device for stopping the motor-drive mechanism after completion of a tap-change, independently of the operating sequence of the control switch
3.42
tap position indicator
device for indicating the tap position of the tap-changer
3.43
tap-change in progress indicator
device for indicating that the motor-drive mechanism is running
3.44
limit switches
device for preventing operation of the tap-changer beyond either end position, but allowing operation in the opposite direction
3.45
mechanical end stop
device which physically prevents operation of the tap-changer beyond either end position, but allows operation in the opposite direction
3.46
parallel control devices
control device to move, in the case of parallel operation of several transformers with taps, all tap-changers to the required position and to avoid divergence of the respective motor-drive mechanisms
Note: Such devices would be necessary also in the case of single-phase transformers forming a three-phase bank when each single-phase tap-changer is fitted with its own motor-drive mechanisms.
3.47
emergency tripping device
device for stopping the motor-drive mechanism at any time in such a way that a special action has to be performed before the next tap-change operation can be started
3.48
overcurrent blocking device
device for preventing or interrupting operation of the motor-drive mechanism for the period in which an overcurrent exceeding a pre-set value is flowing in the transformer winding
Note: Where diverter or selector switches are actuated by spring energy systems, interruption of the operation of the motor-drive mechanism will not prevent operation of the diverter or selector switch if the spring release has been actuated.
3.49
restarting device
device designed to restart the motor-drive mechanism after an interruption of the supply voltage to complete a tap-change operation already initiated
3.50
operation counter
device for indicating the number of tap-changes accomplished
3.51
manual operation of a motor-drive mechanism
operation of the tap-changer manually by a device, blocking at the same time operation by the electric motor
3.52
motor-drive cubicle
cubicle that houses the motor-drive mechanism
?
3.53
protective device against running-through
device that stops the motor-drive mechanism in case of a failure of the step-by-step control circuit which would cause the motor-drive mechanism to run through several tap positions
3.54
class I tap-changer
tap-changer only suitable for use at the neutral point of windings
3.55
class II tap-changer
tap-changer suitable for use at any position in the windings other than the neutral point of windings
3.56
in-tank tap-changer
tap-changer mounted inside the main transformer tank and immersed in the insulating liquid of the transformer
Note: See GB/T 10230.2 for further details.
3.57
compartment type tap-changer
tap-changer with its own housing mounted outside the main transformer tank and immersed in its own insulating liquid
Note: See GB/T 10230.2 for further details.
?
3.58
gas immersed tap-changer
tap-changer mounted inside the main tank of the gas filled type transformer or in a container outside the main tank and immersed in the insulating gas
Note: Usually the insulating gas is SF6 .
3.59
air insulated tap-changer
tap-changer where the insulation medium is the air at atmospheric pressure
Note: This kind of tap-changer is usually mounted to a dry-type transformer and does not need its own container, which is simply called dry-type tap-changer.
3.60
highest voltage for equipment
Um
highest r.m.s. phase-to-phase voltage in a three-phase system for which a tap-changer is designed with respect to its insulation
Foreword i
1 Scope
2 Normative references
3 Terms and definitions
4 Service conditions
5 Technical requirements for on-load tap-changers
6 Requirements for motor-drive mechanisms for on-load tap-changers
7 Technical requirements for de-energized tap-changers
8 Technical requirements for motor-drive mechanisms for de-energized tap-changers
9 Nameplate
10 De-energized tap-changer warning label
11 Manufacturers operating instructions
Annex A (Informative) Technical differences between this part and IEC 60214-1: 2014 and their reasons
Annex B (Normative) Supplementary information on switching duty relating to resistor type tap-changers
Annex C (Normative) Supplementary information on switching duty relating to reactor type tap-changers
Annex D (Informative) Example of a synthetic test circuit for service duty test of vacuum type tap-changers
Annex E (Informative) Simulated AC test circuits for service duty and breaking capacity tests
Annex F (Normative) Method for determining the equivalent temperature of the transition resistor using power pulse current
Annex G (Informative) Test voltage levels for on-load tap-changer and off-circuit tap-changer in IEC 60214-1:
Annex H (Informative) Working principle of no arcing on-load tap-changers
Annex I (Informative) Special tests for on-load tap-changers
Annex J (Informative) Performance requirements and test methods for electronic controllers (displays)
Bibliography
Figure 1 Short-circuit test current (r.m.s. value) as a multiple of the maximum rated through-current (on-load tap-changer)
Figure 2 Time sequence for the application of test voltage (on-load tap-changer)
Figure 3 Short-circuit test current as a multiple of the maximum rated through-current (de-energized tap-changer)
Figure 4 Time sequence for the application of test voltage (de-energized tap-changer)
Figure 5 Warning label
Figure B.1 Examples of current and voltage vectors for resistor type tap-changers
Figure C.1 Operating sequence of reactor type tap-changers with selector switch
Figure C.2 Current and voltage vectors for reactor type tap-changers with selector switch
Figure C.3 Operating sequence of reactor type tap-changers with selector switch and equalizer windings
Figure C.4 Current and voltage vectors for reactor type tap-changers with selector switch and equalizer windings
Figure C.5 Operating sequence of a reactor type tap-changer with diverter switch and tap selector
Figure C.6 Current and voltage vectors for reactor type tap-changers with diverter switch and tap selector
Figure C.7 Operating sequence of a reactor type tap-changer with vacuum interrupter (vacuum tube) and tap selector
Figure C.8 Current and voltage vectors for reactor type tap-changers with vacuum interrupter (vacuum tube) and tap selector
Figure D.1 Synthetic test circuit for service duty test of vacuum type tap-changers
Figure D.2 Currents of the synthetic test circuit
Figure D.3 Example of the synthetic test for a switching operation with equal voltages for breaking and making duty
Figure E.1 Simulated test circuit - Transformer method
Figure E.2 Simulated test circuit - Resistance method
Figure E.3 Simulated test circuit - Opposition method
Figure E.4 Simulation of test circuit - Resonance method
Figure H.1 Thyristor series voltage regulation device
Figure H.2 Working principle diagram of electronic on-load tap-changer
Figure H.3 Working principle diagram of thyristor mechanical hybrid on-load tap-changer
Figure H.4 Basic circuit of thyristor auxiliary contact
Figure H.5 Working principle of double resistance transition thyristor mechanical hybrid on-load tap-changer
Table 1 Temperature of tap-changer environment
Table 2 Contact temperature-rise limits for on-load tap-changers
Table 3 Test voltage levels for on-load tap-changers
Table 4 Contact temperature-rise limits for de-energized tap-changers
Table 5 Test voltage levels for de-energized tap-changers
Table A.1 Technical differences between this part and IEC 60214-1: 2014 and their reasons
Table B.1 Duty of main and transition contacts for resistor type tap-changers (non-vacuum type)
Table B.2 Effect of load power-factor on circuit-breaking duty for resistor type tap-changers (non-vacuum type)
Table B.3 Duty of main contacts and transition contacts of resistor type tap-changers (vacuum type)
Table C.1 Duty of switching contacts for reactor type tap-changers with selector switch - Switching direction from P1 to P
Table C.2 Duty of switching contacts for reactor type tap-changers with selector switch and equalizer windings - Switching direction from P1 to P
Table C.3 Duty of switching contacts for reactor type tap-changers with diverter switch and tap selector - Switching direction from P1 to P
Table C.4 Duty of switching contacts for reactor type tap-changers with vacuum interrupter and tap selector - Switching direction from P1 to P
Table G.1 Test voltage levels for on-load tap-changer and off-circuit tap-changer in IEC 60214-1:
Table J.1 Environmental adaptability requirements of controllers (displays)
Table J.2 Electromagnetic compatibility requirements of controllers
Table J.3 Withstand voltage dig, short interruption and voltage variation requirements
Table J.4 Requirements for impulse withstand voltage of controllers (displays)
Table J.5 Electrical insulation clearance and creepage distance of controllers (displays)
分接開關
第1部分:性能要求和試驗方法
1 范圍
GB/T 10230的本部分規定了分接開關的術語和定義、使用條件、有載分接開關的技術要求、有載分接開關的電動機構技術要求、無勵磁分接開關的技術要求、無勵磁分接開關的電動機構技術要求、銘牌、無勵磁分接開關警告標示和制造方使用說明書。
本部分適用于電阻式和電抗式有載分接開關、無勵磁分接開關及它們的電動機構。
本部分適用于浸在符合GB 2536的礦物絕緣油中的分接開關。若條件合適,則也可以適用于氣體絕緣或浸在其他絕緣液體中的分接開關。
本部分主要適用于帶電弧觸頭的有載分接開關,若條件適用,則也可以適用于無弧的有載分接開關(例如:電子式轉換)。
本部分適用于所有類型的電力變壓器和配電變壓器及電抗器用的分接開關。
本部分不適用于牽引變壓器和牽引電抗器用分接開關、調容變壓器用調容分接開關。
2規范性引用文件
下列文件對于本文件的應用是必不可少的。凡是注日期的引用文件,僅注日期的版本適用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
GB/T 1094.7 電力變壓器 第7部分:油浸式電力變壓器負載導則(GB/T 1094.7—2008,IEC 60076-7:2005,MOD)
GB 2536 電工流體 變壓器和開關用的未使用過的礦物絕緣油(GB 2536—2011,IEC 60296:2003,MOD)
GB/T 2900.95 電工術語 變壓器、調壓器和電抗器(GB/T 2900.95—2015,IEC 60050-421:1990,NEQ)
GB/T 4109 交流電壓高于1 000 V的絕緣套管(GB/T 4109—2008,IEC 60137 Ed.6.0,MOD)
GB/T 4208 外殼防護等級(IP代碼)(GB/T 4208—2017,IEC 60529:2013,IDT)
GB/T 7354 高電壓試驗技術 局部放電測量(GB/T 7354—2018,IEC 60270:2000,MOD)
GB/T 10230.2分接開關 第2部分:應用導則(GB/T 10230.2—2007,IEC 60214-2:2004,MOD)
GB/T 16927.1 高電壓試驗技術 第1部分:一般定義及試驗要求(GB/T 16927.1—2011,IEC 60060-1:2010,MOD)
3術語和定義
GB/T 2900.95界定的以及下列術語和定義適用于本文件。
3.1
有載分接開關on-load tap-changer;OLTC
適合在變壓器勵磁或負載下進行操作的用來改變繞組分接位置的一種裝置。
注:有載分接開關有時也稱作LTC。
3.2
非真空型有載分接開關 non-vacuum type on-noad tap-changer
觸頭通斷負載與環流的電弧發生在液體或氣體中的有載分接開關,且自身放置在液體或氣體里。
注:本定義并不適用于無弧有載分接開關。
3.3
真空型有載分接開關 vacuum type on-Boad tap-changer
觸頭通斷負載與環流的電弧發生在真空斷流器(真空管)中的有載分接開關,且自身放置在如液體或氣體的不同介質中。
3.4
無弧有載分接開關 no arcing on-load tap-changer
觸頭通斷負載和環流時不產生燃弧的有載分接開關(例如電子式或晶閘管機械混合式),且自身放置在如液體或氣體的不同介質中。
3.5
分接選擇器tap selector
能承載電流但不能接通或開斷電流的一種裝置,它與切換開關配合使用,以選擇分接連接位置。
3.6
切換開關diverter switch
與分接選擇器配合使用,在已選電路中承載、接通和開斷電路中電流的一種裝置。
注:切換開關和分接選擇器組成的分接開關也稱為組合式有載分接開關。
3.7
選擇開關 selector switch
把分接選擇器和切換開關的功能結合在一起,能承載、接通和開斷電流的一種開關裝置。
注1:在非真空型選擇開關中分接連接位置的選擇(分接選擇器任務)和通過電流的轉換(切換開關任務)都是由相同的觸頭進行。
注2:在真空型選擇開關中分接連接位置的選擇(分接選擇器任務)和通過電流的轉換(切換開關任務)是由不同的觸頭進行。
注3:選擇開關也稱為復合式有載分接開關。
3.8
無勵磁分接開關de-energized tap-changer;DETC
只能在變壓器無勵磁下改變繞組分接位置的一種裝置。
注1:DETC有時也稱為OCTC。
注2:DETC有時縮寫為DTC。
3.9
轉換選擇器change-over selector
與分接選擇器或選擇開關配合使用,能承載電流但不能接通和開斷電流的一種裝置。當從一個終端位置轉移到另一終端位置時,能使分接選擇器或選擇開關的觸頭和接于其上的分接頭不止一次地被使用著。
3.10
粗調選擇器coarse change-over selector
把分接繞組接到粗調繞組或接到主繞組或其所屬部分繞組上的一種轉換選擇器。
3.11
極性選擇器reversing change-over selector
把分接繞組的一端或另一端接到主繞組上的一種轉換選擇器。
3.12
過渡阻抗transition impedance
由一個或幾個元件組成的電阻器或電抗器,用以把使用中的分接頭和與其相鄰的將要使用的分接頭橋接起來,使負載從一個分接轉移到另一個分接而不切斷負載電流或不使負載電流有明顯的變化。同時,也在兩個分接頭均被使用的期間內限制其上的循環電流。
注:對于電抗式分接開關,過渡阻抗(電抗器)通稱為限流自耦變壓器。電抗式分接開關通常將橋接位置作為工作位置(中點或中心抽頭的電抗式分接開關)用。因此,電抗器設計為連續工作。
3.13
限流自耦變壓器preventive auto transformer
一種自耦變壓器(或中心抽頭電抗器),用于有載分接變換和調壓變壓器或分級電壓調節器。當其工作在兩相鄰分接被橋接的位置時或相鄰位置分接變換期間時,用來限制循環電流。
3.14
平衡繞組equalizer winding
與電抗式調壓變壓器的勵磁繞組和分接繞組處在同一磁路上的繞組,其匝數約為每一分接段匝數的一半。
3.15
驅動機構 drive mechanism
用于驅動分接開關的一種裝置。
注:機構可包括一個獨立的能控制操作的儲能機構。
3.16
觸頭組 set of contacts
單個定觸頭和動觸頭組成的觸頭對或幾對實際上是同時動作的觸頭對的組合體。
3.17
切換開關和選擇開關主觸頭(電阻式分接開關)diverter switch and se selector switch main contacts(resistor type tap-changer)
承載通過電流,并通常與主通斷觸頭并聯僅起轉換電流作用的觸頭組(斷口間通常有火花發生)。
3.18
切換開關和選擇開關主通斷觸頭(電阻式分接開關)diverter switch and selector switch main switching contacts(resistor type tap-changer)
接通和開斷電流的觸頭組,它與變壓器繞組之間不接入過渡電阻(斷口間將有電弧發生)。
注:在真空型分接開關中,主通斷觸頭將被真空斷流器(真空管)所替代。
3.19
切換開關和選擇開關過渡觸頭(電阻式分接開關)diverter switch and selector switch transitioncontacts(resistor type tap-changer)
與過渡電阻串聯的、能接通和開斷電流的觸頭組(斷口間將有電弧發生)。
注:在真空型分接開關中,過渡觸頭將被真空斷流器(真空管)所替代。
3.20
轉換觸頭(電抗式分接開關)transfer contacts(reactor type tap-changer)
能接通和開斷電流的觸頭組。
注:在無旁路觸頭時,轉換觸頭是連續載流的觸頭。
3.21
旁路觸頭(電抗式分接開關)by-pass contacts(reactor type tap-changer)
將電流轉移到轉換觸頭而不產生電弧(可能發生火花)的載流觸頭組。
3.22
橋接位置 bridging position
電抗式分接開關選擇器與轉換觸頭是位于兩個相鄰分接上的位置,且輸出端子是電氣連接在兩個相鄰的分接間的中間位置上。
3.23
非橋接位置non-bridging position
電抗式分接開關選擇器與轉換觸頭是位于同一分接上的位置。
3.24
循環電流drculating current
電阻式分接開關在分接變換中,當相鄰兩個分接頭被暫時橋接時,或當電抗式分接開關在橋接的工作位置時,由分接頭之間的電壓降產生的,并流過過渡阻抗的電流。
注:這個循環電流是由分接間電壓差所引起的。
3.25
開斷電流 switched current
分接變換時,在切換開關或選擇開關每個主通斷觸頭組或過渡觸頭組(電阻式分接開關)或轉換觸頭(電抗式分接開關)上所預計開斷的電流。
3.26
恢復電壓recovery voltage
切換開關或選擇開關的每個主通斷觸頭組或過渡觸頭組(電阻式分接開關)或轉換觸頭(電抗式分接開關),在開斷電流被切斷之后出現在斷口的工頻電壓。
3.27
分接變換操作tap-change operation
分接變換從一個工作分接位置轉換到相鄰一個分接位置的由開始到完成的全部過程。
3.28
操作循環cycle of operation
分接開關從一個終端位置變換到另一個終端位置,再同到原始位置的動作。
3.29
額定絕緣水平rated insulation level
對地、相間(如果適用)以及要求絕緣的那些零部件之間的沖擊和工頻耐受電壓值。
3.30
額定通過電流 rated through-current
Ir
經分接開關流到外部電路的電流,此電流在相關的級電壓下,能被分接開關從一個分接轉移到另一個分接去。在滿足本部分要求的情況下,分接開關能連續地承載此電流。
3.31
最大額定通過電流 maximum rated through-current
Irm
分接開關設計的最大額定通過電流,它是作為有關試驗的基準電流。
3.32
額定級電壓rated step voltage
Uir
對于每個額定通過電流,接到變壓器相鄰兩個分接頭上的分接開關兩個端子間的最大允許電壓。
3.33
相關額定級電壓relevant rated step voltage
與給定的額定通過電流相關的允許最大級電壓。
3.34
最大額定級電壓maximum rated step voltage
Uirm
分接開關設計的額定級電壓的最大值。
3.35
額定頻率 rated frequency
分接開關設計的交流頻率。
3.36
固有分接位置數 number of inherent tap positions
按照設計,一臺分接開關在半個操作循環內所能用上的分接位置數的最大值。
注:“分接位置”術語一般以相關數的“±”值表示,例如±11位置,它們原則上也適用于電動機構。當使用術語“分接位置數”是與變壓器有關時,總是指變壓器的工作分接位置數。
3.37
工作分接位置數number of service tap positions
裝在變壓器里的一臺分接開關在半個操作循環內所使用的分接位置數。
注:“分接位置”術語一般以相關數的“±”值表示,例如±11位置,它們原則上也適用于電動機構。當使用術語“分接位置數”是與變壓器有關時,總是指變壓器的工作分接位置數。
3.38
型式試驗type test
在能代表某一系列分接開關的一臺分接開關上所進行的試驗,以驗證例行試驗中未驗證的規定要求。如果這些分接開關是基于采用相同技術或相同材料的相同圖紙制造的,則該臺分接開關可被認為具有代表性。
注1:分接開關型式試驗通常可以在一臺分接開關或一臺分接開關組部件,或同一系列分接開關的組部件上進行。
注2:分接開關系列是指基于同一設計的,并且在特性方面除對地及相間(如果有)絕緣水平、分接位置數及過渡阻抗值外都相同的一些分接開關。
注3:與一個特定型式試驗無關的設計派生,不需要重復那種型式試驗。
注4:一個導致數值與強度降低的設計派生,如果購買方與制造方均接受,則不需要一個特定的型式試驗。
3.39
例行試驗 routine test
在其每臺分接開關上所進行的試驗。
注:例行試驗可在分接開關或分接開關的組件上進行。
3.40
電動機構 motor drive mechanism
裝有電動機及控制線路的驅動機構。
3.41
電動機構逐級控制 step-by-step control of a motor-drive mechanism
不管控制開關的操作順序如何,在一個分接變換完成后,能使電動機構停止的裝置。
3.42
分接位置指示器tap position indicator
用以指示分接開關分接位置的裝置。
3.43
分接變換指示器tap-change in progress indicator
用以指示電動機構正在運行的裝置。
3.44
極限開關 Iimit switches
能防止分接開關發生超越任一端位的操作,但允許向相反方向操作的裝置。
3.45
機械端位止動裝置mechanical end stop
能防止分接開關超越任一端位的操作,但允許向相反方向操作的機械裝置。
3.46
并聯控制裝置parallcl control devices
一種電氣控制裝置。在幾臺帶分接的變壓器并聯運行情況下,用它使所有的分接開關同時調到所需要的分接位置上,以避免各個電動機構操作不一致。
注:對于組成三相組的單相變壓器,當每臺單相分接開關均有自己的電動機構時,也需采用這樣的控制裝置。
3.47
緊急脫扣裝置 emergency tripping device
一種能使電動機構在任何時候停止的裝置,且當分接開關要開始下一個分接變換操作時,該裝置需先完成一個特定的動作。
3.48
過電流閉鎖裝置 overcurrent blocking device
當通過變壓器繞組中的過電流超過整定值時,能防止或中斷電動機構操作的一種裝置。
注:用彈簧儲能系統帶動的切換開關或選擇開關,如果彈簧機構已釋放動作,即使電動機構操作中斷,則也不能阻止切換開關或選擇開關操作。
3.49
重啟動裝置restaring device
能在電源電壓中斷后,使電動機構再次啟動,從而使原來已經開始了的一個分接變換操作得以完成的一種裝置。
3.50
操作計數器operation counter
一種用來指示分接變換完成次數的裝置。
3.51
電動機構的手動操作 manual operation of a motor-drive mechanism
使用一種機械工具,以手動方式進行分接開關的操作,同時,電動機的操作被閉鎖。
3.52
電動機構箱motor-drive cubicle
裝有電動機構的箱子。
3.53
防止越級的保護裝置protective device against running-through
當逐級控制線路發生故障時,能使電動機構停止的一種裝置,以免出現電動機構跨越若干分接位置的情況。
3.54
I類分接開關class I tap-changer
僅適用于繞組中性點處的分接開關。
3.55
Ⅱ類分接開關classⅡtap-changer
適用于繞組中性點以外的其他位置處的分接開關。
3.56
埋入式分接開關in-tank tap-changer
分接開關安裝在變壓器主油箱內,且浸在其變壓器絕緣液體內。
注:進一步信息見GB/T 10230.2。
3.57
外置式分接開關 compartment type tap-changer
分接開關安裝在變壓器主油箱外邊,且浸在它自身的絕緣液體內。
注:進一步信息見GB/T 10230.2。
3.58
充氣式分接開關 gas immersed tap-changer
分接開關安裝在充氣式變壓器主氣箱內或變壓器主氣箱外部的一容器內,且浸在它自身的絕緣氣體里。
注:絕緣氣體通常是SF6。
3.59
空氣絕緣分接開關 air insulated tap-changer
在大氣壓力下絕緣介質為空氣的分接開關。
注:這種型式分接開關通常安裝在干式變壓器上,不需要自身的容器,簡稱為干式分接開關。
3.60
設備最高電壓highest voltage for equipment
Um
三相系統最高的相間電壓方均根值,分接開關的絕緣是按此設計的。
4使用條件
4.1 分接開關的環境溫度
除用戶規定更嚴酷的條件外,液浸式分接開關應適于在表1所規定的溫度范圍內工作。
表1 分接開關的環境溫度
分接開關 溫度
最 低 最 高
外置式分接開關 -25℃ 與變壓器環境溫度相同
埋入式分接開關 -25℃ 105℃
注1:對分接開關的定義,見3.56和3.57。
注2:表中所列的105℃值,是基于GB/T 1094.7規定的正常循環負載下最高頂層油溫。
4.2 電動機構的環境溫度
除用戶規定更嚴酷的條件外,電動機構應適于在-25℃~40℃的環境溫度下運行。
分接開關和電動機構更嚴酷的環境條件見GB/T 10230.2。
4.3 過載條件
符合本部分并按GB/T 10230.2選用和安裝好的分接開關,不應限制GB/T 1094.7中規定的變壓器的急救負載能力,變壓器的急救負載有可能導致其頂層油溫達到115℃。
5 有載分接開關的技術要求
5.1一般技術要求
5.1.1 額定值
5.1.1.1 額定特性
有載分接開關的額定特性為:
——額定通過電流;
——最大額定通過電流;
——額定級電壓;
——最大額定級電壓;
——額定頻率;
——額定絕緣水平。
5.1.1.2額定通過電流與額定級電壓間的相互關系
在不超過分接開關的最大額定通過電流下,可以有各種不同的額定通過電流值與相應的額定級電壓值的組合。與額定通過電流某一個規定值相對應的某個額定級電壓稱為“相關額定級電壓”。
5.1.2切換開關和選擇開關的油(氣)室
注入液體的切換開關或選擇開關油室應是密封的。注入氣體的切換開關或選擇開關的氣室也應是氣密的。如有需要,則壓力和真空耐受值應由制造方給出。
如果采用油中溶解氣體分析法(DGA)對變壓器油進行監視,則切換開關或選擇開關的油室應裝設一個儲油柜,此儲油柜應有液體密封和氣密的隔膜。對真空型有載分接開關則需要變壓器制造方與用戶就此問題進行協商。
5.1.3油位計與氣體監視裝置
帶有整體膨脹容積儲油柜或獨立儲油柜的切換開關或選擇開關油室(如果有),應裝有油位計。
充氣式分接開關的切換開關或選擇開關的氣室應裝有氣體監視裝置。
注:氣體監視裝置可以是突發壓力繼電器或密度繼電器。
5.1.4 防止內部故障的安全要求
5.1.4.1 概述
為了盡量減少切換開關或選擇開關的油(氣)室內部故障引起的后果,應裝備一個保護裝置。此保護裝置應具有檢測電弧故障或最終導致電弧故障的故障模式的功能。
所選的用于有載分接開關的一個保護裝置應由制造方推薦。至少應安裝一個保護裝置。
用于液浸式有載分接開關最常見類型的保護裝置如下所述。
外置式有載分接開關的分接選擇器油室通常是與主變壓器氣體繼電器相連通,也應考慮在分接選擇器油室與儲油柜之間提供一個單獨合適的氣體繼電器。
注:真空型、無弧型且安裝在密封油室里的有載分接開關可以采用其他型式的保護裝置。
5.1.4.2油流控制繼電器
安裝在切換開關或選擇開關頂部和儲油柜之間連管上的油流控制繼電器,當液體流動速度達到某一整定值時,它應動作并使變壓器被切除。
5.1.4.3過壓力繼電器
當切換開關或選擇開關油室中的壓力一旦超過某一整定值時,過壓力繼電器動作并使變壓器被切除。
5.1.4.4壓力釋放裝置
當油室壓力超過整定值時,壓力釋放裝置將打開,從而使切換開關或選擇開關的油室得到保護。
當壓力釋放裝置是單一保護時,它也應裝觸點以使變壓器被切除。
如果裝有壓力釋放裝置,則可以采用自密封隔膜式結構。此時應考慮裝有壓力釋放裝置的排出口,例如導管或管路,以保護人員免受液流的傷害。采用此裝置應符合制造方與用戶之間的協議。
5.1.5 防護瞬時過電壓的限制裝置
對于裝有限制瞬時過電壓保護裝置的分接開關,分接開關制造方應對此過電壓保護裝置的保護特性以及在變壓器試驗時可能受到的任何限制均給出詳細說明。
當采用火花間隙時,應注意在此間隙閃絡后,保證放電能自動熄滅。
5.1.6轉換選擇器恢復電壓
當粗調選擇器或極性選擇器操作時,分接繞組將瞬間懸浮。在觸頭分離期間,由于分接繞組與鄰近繞組間的耦合電容,可能使轉換選擇器觸頭間產生較高的恢復電壓。分接開關制造方應闡明有載分接開關轉換選擇器的任何極限轉換參數。
注:關于選擇、控制線路和裝置以及變壓器試驗的進一步說明見GB/T 10230.2。
5.1.7粗細調轉換泄漏電感
對于電阻式分接開關,當從細調繞組的一端變換到粗調繞組一端時,在兩個繞組反向串接下,能產生一個高的泄漏電感,從而使切換開關或選擇開關的開斷電流與恢復電壓之間有一個相位移,這可能導致開關電弧的延長。
有載分接開關制造方應對轉換選擇器的各種轉換限制予以闡明。
注:關于選擇和有關漏電感的繞組布置圖的進一步說明見GB/T 10230.2。