GB/T 24610 covers the following four parts under the general title Rolling Bearings - Measuring Methods for Vibration:
——Part 1: Fundamentals;
——Part 2: Radial Ball Bearings with Cylindrical Bore and Outside Surface;
——Part 3: Radial Spherical and Tapered Roller Bearings with Cylindrical Bore and Outside Surface;
——Part 4: Radial Cylindrical Roller Bearings with Cylindrical Bore and Outside Surface.
This part is Part 2 of GB/T 24610.
This part is developed in accordance with the rules given in GB/T 1.1-2009.
This part replaces GB/T 24610.2-2009 Rolling bearings - Measuring methods for vibration - Part 2: Radial ball bearings with cylindrical bore and outside surface, and the following main technical changes are made made with respect to GB/T 24610.1-2009:
——The part of the expression "rotational frequency" is modified (see 4.1, 4.1 of Edition 2009);
——The representation of the symbol "root mean square vibration velocity" is modified (see 5.1, 5.1 of Edition 2009);
——The "Examples of frequency ranges for non-standard rotational frequencies" table is added (see Table 3);
——Some graphs are modified and the illustration of the graph is added (see Figure 2, Figure 3 and Figure A.1; Figure 2, Figure 3 and Figure A.1 of Edition 2009);
——The "bearing cleanliness, lubrication, operator requirements" is deleted (see 6.1.2, 6.1.3, 6.4 of Edition 2009);
——The requirement of "non-prelubricated bearings" is added (see 6.1.2);
This part is identical with International Standard ISO 15242-2:2015 Rolling bearings - Measuring methods for vibration - Part 2: Radial ball bearings with cylindrical bore and outside surface.
The Chinese documents identical to the normative international documents given in this part are as follows:
——GB/T 1800.2-2009, Geometrical Product Specifications (GPS) - Limits and Fits - Part 2: Tables of Standard Tolerance Grades and Limit Deviations for Holes and Shafts (ISO 286-2:1988, MOD)
——GB/T 2298-2010, Mechanical Vibration, Shock and Condition Monitoring - Vocabulary (ISO 2041:2009, IDT);
——GB/T 6930-2002, Rolling Bearings - Vocabulary (ISO 5593:1997, IDT)
——GB/T 24610.1-2019, Rolling bearings - Measuring methods for vibration Part 1: Fundamentals ( ISO 15242-1:2015, IDT)
This standard was proposed by the China Machinery Industry Federation.
This part is under the jurisdiction of the National Technical Committee on Rolling Bearing of Standardization Administration of China (SAT/TC 98).
The previous editions of this part are as follows:
——GB/T 24610.2-2009.
Introduction
Vibration in rotating rolling bearings can be of importance as an operating characteristic of such bearings. The vibration can affect the performance of the mechanical system incorporating the bearing and can result in audible noise when the vibration is transmitted to the environment in which the mechanical system operates, can lead to damages, and can even create health problems.
Vibration of rotating rolling bearings is a complex physical phenomenon dependent on the conditions of operation. Measuring the vibration of an individual bearing under a certain set of conditions does not necessarily characterize the vibration under a different set of conditions or when the bearing becomes part of a larger assembly. Assessment of the audible sound generated by the mechanical system incorporating the bearing is further complicated by the influence of the interface conditions, the location and orientation of the sensing device, and the acoustical environment in which the system operates. Assessment of airborne noise, which for the purpose of GB/T 24610 (all parts) can be defined as any disagreeable and undesired sound, is further complicated by the subjective nature of the terms disagreeable and undesired. Structure-borne vibration can be considered the driving mechanism that ultimately results in the generation of airborne noise. Only selected methods for the measurement of the structure-borne vibration of rotating rolling bearings are addressed in GB/T 24610 (all parts).
Vibration of rotating rolling bearings can be assessed by a number of means using various types of transducers and measurement conditions. No simple set of values characterizing the vibration of a bearing is adequate for the evaluation of the vibratory performance in all possible applications. Ultimately, a knowledge of the type of bearing, its application and the purpose of the vibration measuring (e.g. as a manufacturing process diagnostic or an assessment of product quality) is required to select the most suitable method for measuring. The field of application for standards on bearing vibration is therefore not universal. However, certain methods have established a wide enough level of application to be considered as standard methods.
This part serves to define the detailed method for assessing vibration of radial ball bearings with cylindrical bore and outside surface on a measuring device.
Rolling bearings - Measuring methods for vibration
Part 2: Radial ball bearings with cylindrical bore and outside surface
1 Scope
This part of GB/T 24610 specifies vibration measuring methods for single-row and double-row radial ball bearings, with a contact angle up to and including 45°.
It applies to radial ball bearings with cylindrical bore and outside surface.
It does not apply to bearings with filling slots and three- and four-point-contact ball bearings.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are indispensable for its application. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
ISO 286-2 Geometrical product specifications (GPS) - ISO code system for tolerances on linear sizes - Part 2: Tables of standard tolerance classes and limit deviations for holes and shafts
ISO 2041:2009 Mechanical vibration, shock and condition monitoring - Vocabulary ISO 5593, Rolling bearings - Vocabulary
ISO 5593 Rolling bearings - Vocabulary
ISO 15242-1:2015 Rolling bearings - Measuring methods for vibration - Part 1:Fundamentals
3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 2041, ISO 5593 and ISO 15242-1 apply.
4 Measurement process
4.1 Rotational frequency
The default rotational frequency shall be 1800 min?1 (30 s?1). The tolerance shall be of the nominal rotational frequency.
Other rotational frequencies and tolerances may be used by agreement between the manufacturer and the customer, for example, it may be necessary to use a higher rotational frequency for bearings in the smaller size range (e.g. 3600 min?1) in order to obtain an adequate vibration signal. Conversely, it may be necessary to use a lower rotational frequency for bearings in the larger size range (e.g. 700 min?1) to avoid possible ball and raceway damage.
4.2 Bearing axial load
The bearing load shall be in the axial direction with default values as specified in Table 1.
Table 1 Default values for bearing axial load
Bearing outside diameter
D Single-row and double-row deep groove and self-aligning radial ball bearings Single-row and double-row angular contact radial ball bearings
10° < Contact angle ≤ 23° 23° < Contact angle ≤ 45°
Default values for axial load
> ≤ min. max. min. max. min. max.
mm N N N
10 25 18 22 27 33 36 44
25 50 63 77 90 110 126 154
50 100 135 165 203 247 270 330
100 140 360 440 540 660 720 880
140 170 585 715 878 1072 1170 1430
170 200 810 990 1215 1485 1620 1980
Other axial loads and tolerances may be used by agreement between the manufacturer and the customer, for example, depending on bearing design, rotational frequency and lubricant used, it may be necessary to use a higher load to prevent ball/raceway slip or a lower load to avoid possible ball and raceway damage.
5 Measurement and evaluation methods
5.1 Physical quantity measured
The default physical quantity to be measured is root mean square vibration velocity, νrms(μm/s), in the radial direction.
5.2 Frequency domain
The vibration velocity shall be analysed in one or more bands with default frequency ranges as specified in Table 2.
Table 2 Default Frequency ranges for default rotational frequency of 1 800 min?1
Rotational frequency Low band (L) Medium band (M) High band (H)
Nominal band pass frequencies
min. max. flow fupp flow fupp flow fupp
min?1 Hz Hz Hz
1764 1818 50 300 300 1800 1800 10000
Other frequency ranges may be considered by agreement between the manufacturer and the customer in those instances where specific ranges have greater importance to successful operation of the bearing. Common used examples are listed in Table 3.
Changing the frequency of rotation should always come along with a proportional change of the filter frequencies and acceptance limits and minimum measuring time. Examples are given in Table 3.
Table 3 Examples of frequency ranges for non-standard rotational frequencies
Rotational frequency Low band (L) Medium band (M) High band (H)
Nominal band pass frequencies
nominal min. max. flow fupp flow fupp flow fupp
min?1 Hz Hz Hz
3600 3528 3636 100 600 600 3600 3600 20000
900 882 909 25 150 150 900 900 5000
700a 686 707 20 120 120 700 700 4000
a In case of 700 min?1, cut-off frequencies are rounded (not according to exact relation of the rotational frequency).
Narrow band spectral analysis of the vibration signal may be considered as a supplementary option.
5.3 Measurement of pulses and spikes
Detection of pulses or spikes in the time domain velocity signal, usually due to surface defects and/or contamination in the measured bearing, may be considered as a supplementary option. Various evaluation methods exist.
5.4 Measurement
All bearings, except for single-row angular contact ball bearings, shall be measured with the axial load applied from one side of the stationary ring and the measurement repeated with the axial load on the other side of the stationary ring. Single-row angular contact ball bearings shall be measured in their foreseen axial load carrying direction only.
Foreword I
Introduction III
1 Scope
2 Normative references
3 Terms and definitions
4 Measurement process
4.1 Rotational frequency
4.2 Bearing axial load
5 Measurement and evaluation methods
5.1 Physical quantity measured
5.2 Frequency domain
5.3 Measurement of pulses and spikes
5.4 Measurement
6 Conditions for measurement
6.1 Bearing conditions for measurement
6.2 Conditions of the measurement environment
6.3 Conditions for the measuring device
Annex A (normative) Measurement of external axial loading alignment
ICS 21.100.20
J 11
GB
中華人民共和國(guó)國(guó)家標(biāo)準(zhǔn)
GB/T 24610.2—2019/ISO 15242-2:2015
代替GB/T 24610.2—2009
滾動(dòng)軸承 振動(dòng)測(cè)量方法
第2部分:具有圓柱孔和圓柱外表面的向心球軸承
Rolling bearings—Measuring methods for vibration—Part 2:Radial ball bearings with cylindrical bore and outside surface
(ISO 15242-2:2015,IDT)
2019-10-18發(fā)布 2020-05-01實(shí)施
國(guó)家市場(chǎng)監(jiān)督管理總局
中國(guó)國(guó)家標(biāo)準(zhǔn)化管理委員會(huì) 發(fā)布
前言
GB/T 24610《滾動(dòng)軸承 振動(dòng)測(cè)量方法》分為4個(gè)部分:
——第1部分:基礎(chǔ);
——第2部分:具有圓柱孔和圓柱外表面的向心球軸承;
——第3部分:具有圓柱孔和圓柱外表面的調(diào)心滾子軸承和圓錐滾子軸承;
——第4部分:具有圓柱孔和圓柱外表面的圓柱滾子軸承。
本部分為GB/T 24610的第2部分。
本部分按照GB/T 1.1—2009給出的規(guī)則起草。
本部分代替GB/T 24610.2—2009《滾動(dòng)軸承 振動(dòng)測(cè)量方法 第2部分:具有圓柱孔和圓柱外表面的向心球軸承》,與GB/T 24610.2—2009相比,主要技術(shù)變化如下:
——修改了“旋轉(zhuǎn)頻率”的部分表述(見(jiàn)4.1,2009年版的4.1);
——修改了“均方根振動(dòng)速度”符號(hào)的表示方法(見(jiàn)5.1,2009年版的5.1);
——增加了“非設(shè)定旋轉(zhuǎn)頻率的頻率范圍示例”表(見(jiàn)表3);
——修改了部分圖形并增加了圖的說(shuō)明(見(jiàn)圖2、圖3、圖A.1,2009年版的圖2、圖3、圖A.1);
——?jiǎng)h除了“軸承的清潔度、潤(rùn)滑、對(duì)操作者的要求”(見(jiàn)2009年版的6.1.2、6.1.3、6.4);
——增加了“非預(yù)潤(rùn)滑軸承”的要求(見(jiàn)6.1.2)。
本部分使用翻譯法等同采用ISO 15242-2:2015《滾動(dòng)軸承 振動(dòng)測(cè)量方法 第2部分:具有圓柱孔和圓柱外表面的向心球軸承》。
與本部分中規(guī)范性引用的國(guó)際文件有一致性對(duì)應(yīng)關(guān)系的我國(guó)文件如下:
——GB/T 1800.2—2009產(chǎn)品幾何技術(shù)規(guī)范(GPS) 極限與配合 第2部分:標(biāo)準(zhǔn)公差等級(jí)和孔、軸極限偏差表(ISO 286-2:1988,MOD)
——GB/T 2298—2010機(jī)械振動(dòng)、沖擊與狀態(tài)監(jiān)測(cè) 詞匯(ISO 2041:2009,IDT)
——GB/T6930—2002滾動(dòng)軸承 詞匯(ISO 5593:1997,IDT)
——GB/T24610.1—2019滾動(dòng)軸承 振動(dòng)測(cè)量方法 第1部分:基礎(chǔ)(ISO 15242-1:2015,IDT)
本部分由中國(guó)機(jī)械工業(yè)聯(lián)合會(huì)提出。
本部分由全國(guó)滾動(dòng)軸承標(biāo)準(zhǔn)化技術(shù)委員會(huì)(SAC/TC 98)歸口。
本部分所代替標(biāo)準(zhǔn)的歷次版本發(fā)布情況為:
——GB/T 24610.2—2009。
引言
滾動(dòng)軸承旋轉(zhuǎn)時(shí)的振動(dòng)是其一個(gè)重要運(yùn)轉(zhuǎn)特性。振動(dòng)會(huì)影響裝有軸承的機(jī)械系統(tǒng)的性能,當(dāng)振動(dòng)向運(yùn)轉(zhuǎn)的機(jī)械系統(tǒng)所處的環(huán)境傳播時(shí)會(huì)引起可聞噪聲,進(jìn)而會(huì)導(dǎo)致系統(tǒng)損傷,甚至?xí)斐山】祮?wèn)題。
滾動(dòng)軸承旋轉(zhuǎn)時(shí)的振動(dòng)是與運(yùn)轉(zhuǎn)條件有關(guān)的一種復(fù)雜的物理現(xiàn)象。在某一組條件下測(cè)量的單套軸承的振動(dòng)值并不一定表征不同的條件下或該軸承成為一較大部件中的一個(gè)零件時(shí)的振動(dòng)值。評(píng)定裝有軸承的機(jī)械系統(tǒng)產(chǎn)生的聲響就更加復(fù)雜,它還受界面條件、感應(yīng)裝置的位置和方向以及系統(tǒng)運(yùn)轉(zhuǎn)所處聲學(xué)環(huán)境的影響。空氣噪聲——GB/T 24610(所有部分)定義為任何令人不愉快的、不希望有的聲音,由于術(shù)語(yǔ)“令人不愉快的、不希望有的”具有主觀特性,因而其評(píng)定更為復(fù)雜。可以認(rèn)為軸承的結(jié)構(gòu)振動(dòng)是最終導(dǎo)致空氣噪聲產(chǎn)生的驅(qū)動(dòng)源。
GB/T 24610(所有部分)僅列入了經(jīng)過(guò)選擇的軸承結(jié)構(gòu)振動(dòng)的測(cè)量方法。
軸承振動(dòng)可采用許多方法中的任一種來(lái)評(píng)定,不同的評(píng)定方法使用不同類(lèi)型的傳感器和測(cè)試條件。沒(méi)有任何一組表征軸承振動(dòng)的數(shù)值能夠?qū)λ锌赡艿氖褂脳l件下的軸承振動(dòng)性能進(jìn)行評(píng)定。最終,還應(yīng)根據(jù)已知的軸承類(lèi)型、使用條件以及振動(dòng)測(cè)試目的(例如,是作為制造過(guò)程診斷,或是作為產(chǎn)品質(zhì)量評(píng)定)等,來(lái)選擇最適用的測(cè)試方法。因此,軸承振動(dòng)標(biāo)準(zhǔn)的適用范圍并不是通用的。但對(duì)于本部分而言,只將某些適用范圍十分廣泛的方法確立為標(biāo)準(zhǔn)方法。
本部分詳細(xì)規(guī)定了在測(cè)試裝置上評(píng)定具有圓柱孔和圓柱外表面的向心球軸承振動(dòng)的方法。
滾動(dòng)軸承 振動(dòng)測(cè)量方法
第2部分:具有圓柱孔和圓柱外表面的向心球軸承
1 范圍
GB/T 24610的本部分規(guī)定了在所確立的測(cè)試條件下,接觸角不大于45°的單列和雙列向心球軸承的振動(dòng)測(cè)量方法。
本部分適用于具有圓柱孔和圓柱外表面的向心球軸承。
本部分不適用于具有裝填槽的軸承和三點(diǎn)、四點(diǎn)接觸球軸承。
2 規(guī)范性引用文件
下列文件對(duì)于本文件的應(yīng)用是必不可少的。凡是注日期的引用文件,僅注日期的版本適用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改單)適用于本文件。
ISO 286-2 產(chǎn)品幾何技術(shù)規(guī)范(GPS) 線(xiàn)性尺寸公差I(lǐng)SO代號(hào)體系 第2部分;標(biāo)準(zhǔn)公差等級(jí)和孔、軸極限偏差表[Geometrical product specifications (GPS)—ISO code system for torlerances on linear sizes—Part2:Tables of standard tolerance grades and limit deviations for holes and shafts.]
ISO 2041:2009機(jī)械振動(dòng)、沖擊與狀態(tài)監(jiān)測(cè)詞匯(Mechanical vibration,shock and condition monitoring—Vocabulary)
ISO 5593 滾動(dòng)軸承 詞匯( Rolling bearings—Vocabulary)
ISO 15242-1:2015 滾動(dòng)軸承 振動(dòng)測(cè)量方法 第1部分:基礎(chǔ)( Rolling bearings—Measuring methods for vibration—Part 1:Fundamentals)
3 術(shù)語(yǔ)和定義
ISO 2041、ISO 5593和ISO 15242-1界定的術(shù)語(yǔ)和定義適用于本文件。
4 測(cè)量程序
4.1 旋轉(zhuǎn)頻率
旋轉(zhuǎn)頻率的設(shè)定值為1800min-1(30s-1),其偏差為標(biāo)稱(chēng)旋轉(zhuǎn)頻率的 。
經(jīng)制造廠與用戶(hù)協(xié)商,也可采用其他旋轉(zhuǎn)頻率和偏差。例如,對(duì)于較小尺寸段的軸承,可以采用較高的旋轉(zhuǎn)頻率(如3600min-1),以便獲得合適的振動(dòng)信號(hào)。反之,對(duì)于較大尺寸段的軸承,可以采用較低的旋轉(zhuǎn)頻率(如700min-1),以避免球和滾道可能產(chǎn)生的損傷。
4.2 軸承軸向載荷
應(yīng)對(duì)軸承施加軸向載荷,其設(shè)定值規(guī)定在表1中。
表1 軸承軸向載荷的設(shè)定值
軸承外徑D 單列和雙列深溝和調(diào)心向心球軸承 單列和雙列角接觸向心球鈾承
10°<接觸角≤23° 23°<接觸角≤45°
> ≤ 軸向載荷的設(shè)定值
min. max. min. max. min. max.
mm N N N
經(jīng)制造廠與用戶(hù)協(xié)商,也可采用其他軸向載荷及偏差。例如,根據(jù)軸承結(jié)構(gòu)、旋轉(zhuǎn)頻率以及所使用的潤(rùn)滑劑,可以采用更高的載荷以防止球與滾道產(chǎn)生打滑;或采用更低的載荷以避免球和滾道可能產(chǎn)生的損傷。
5 測(cè)量和評(píng)定方法
5.1 測(cè)量的物理量
測(cè)量時(shí)設(shè)定的物理量為徑向均方根振動(dòng)速度,vrms(μm/s)。
5.2 頻域
振動(dòng)速度應(yīng)在一個(gè)或多個(gè)頻帶內(nèi)、如表2中所規(guī)定的設(shè)定的頻率范圍內(nèi)分析。
表2 旋轉(zhuǎn)頻率1800min-1的設(shè)定頻率范圍
旋轉(zhuǎn)頻率 低頻帶(L) 中頻帶(M) 高頻帶(H)
min. max. 標(biāo)稱(chēng)頻帶
flow fupp flow fupp flow fupp
min-1 Hz Hz Hz
如果某一特定的頻率范圍對(duì)軸承獲得良好運(yùn)轉(zhuǎn)極為重要時(shí),經(jīng)制造廠與用戶(hù)協(xié)商,也可以采用其他的頻率范圍,常用的特定頻率范圍示例見(jiàn)表3。
旋轉(zhuǎn)頻率應(yīng)根據(jù)濾波器頻率的比例變化、可接收限值和最小測(cè)量時(shí)間進(jìn)行改變,示例見(jiàn)表3。
表3 非設(shè)定旋轉(zhuǎn)頻率的頻率范圍示例
旋轉(zhuǎn)頻率 低頻帶(L) 中頻帶(M) 高頻帶(H)
標(biāo)稱(chēng) min. max. 標(biāo)稱(chēng)頻帶
flow fupp flow fupp flow fupp
min-1 Hz Hz Hz
3600 3528 3636 100 600 600 3600 3600 20000
900 882 909 25 150 150 900 900 5000
700a 686 707 20 120 120 700 700 4000
a 旋轉(zhuǎn)頻率為 700min-1時(shí),截止頻率進(jìn)行了圓整(未嚴(yán)格按與旋轉(zhuǎn)頻率之間的關(guān)系)。
振動(dòng)信號(hào)的窄帶頻譜分析可作為補(bǔ)充選項(xiàng)。
5.3 脈沖和尖銳脈沖測(cè)量
被測(cè)軸承中的表面缺陷和/或污染常常造成時(shí)域速度信號(hào)的脈沖或尖銳脈沖,可以考慮將脈沖或尖銳脈沖的檢測(cè)作為一種補(bǔ)充選項(xiàng)。可以采用不同的評(píng)定方法。
5.4 測(cè)試
除單列角接觸球軸承外,所有軸承在測(cè)試時(shí),應(yīng)在靜止套圈的一側(cè)施加軸向載荷,然后在靜止套圈的另一側(cè)施加軸向載荷進(jìn)行重復(fù)測(cè)試。單列角接觸球軸承應(yīng)僅在其預(yù)知的軸向承載方向上進(jìn)行測(cè)試。
每個(gè)頻帶的最大振動(dòng)示值應(yīng)在極限值內(nèi)。
用于診斷分析時(shí),應(yīng)在軸承靜止套圈相對(duì)于傳感器的不同角位置處進(jìn)行多點(diǎn)測(cè)量。測(cè)試持續(xù)時(shí)間按ISO15242-1:2015中6.5的規(guī)定。
6 測(cè)量條件
6.1 軸承的測(cè)量條件
6.1.1 預(yù)潤(rùn)滑軸承
預(yù)潤(rùn)滑(脂潤(rùn)滑、油潤(rùn)滑或固體潤(rùn)滑)軸承,包括密封軸承和防塵軸承,應(yīng)在供貨狀態(tài)下測(cè)試。
6.1.2 非預(yù)潤(rùn)滑軸承
由于污染物影響振動(dòng)水平,因此,軸承應(yīng)進(jìn)行有效的清洗,注意不要引入污染物或其他振源。
注:某些防銹劑可滿(mǎn)足振動(dòng)測(cè)試的潤(rùn)滑要求,此時(shí)不必清除防銹劑。
非預(yù)潤(rùn)滑軸承應(yīng)根據(jù)軸承類(lèi)型和大小,使用公稱(chēng)運(yùn)動(dòng)黏度在10mm2/s~100mm2/s之間并經(jīng)精細(xì)過(guò)濾的潤(rùn)滑油進(jìn)行充分潤(rùn)滑。
潤(rùn)滑過(guò)程中應(yīng)進(jìn)行試運(yùn)轉(zhuǎn),以使軸承內(nèi)的潤(rùn)滑劑均勻分布。
6.2 測(cè)試環(huán)境條件
軸承應(yīng)在不影響振動(dòng)的環(huán)境中進(jìn)行測(cè)試。
6.3 測(cè)量裝置條件
6.3.1 主軸/心軸的剛度
用于支承和驅(qū)動(dòng)軸承的主軸(包括心軸)的結(jié)構(gòu),不僅可傳遞旋轉(zhuǎn)運(yùn)動(dòng),而且還可作為旋轉(zhuǎn)軸線(xiàn)的剛性參照系。在使用的頻帶范圍內(nèi),主軸/心軸和軸承之間振動(dòng)的傳遞與所測(cè)量的振動(dòng)速度相比,可以忽略不計(jì)。
6.3.2 加載機(jī)構(gòu)
用于對(duì)軸承被測(cè)套圈施加載荷的加載機(jī)構(gòu)的結(jié)構(gòu),應(yīng)使套圈在所有方向——徑向、軸向、角向或撓曲型(視軸承類(lèi)型而定)的振動(dòng)本質(zhì)上處于自由振動(dòng)狀態(tài),并能夠保證軸承的正常運(yùn)轉(zhuǎn)。
6.3.3 軸承外加載荷的大小和對(duì)中精度
施加于軸承靜止套圈上的恒定外加軸向載荷的大小規(guī)定在4.2中。
由于各機(jī)械零件的接觸而引起的軸承套圈變形與被測(cè)軸承自身的幾何精度相比,可忽略不計(jì)。
外加載荷的位置和方向應(yīng)與主軸旋轉(zhuǎn)軸線(xiàn)重合,其偏差應(yīng)在圖1和表4所規(guī)定的范圍內(nèi)。測(cè)量方法按附錄A的規(guī)定。
a 外加載荷的軸線(xiàn)。
b 軸承內(nèi)圈旋轉(zhuǎn)軸線(xiàn)。
c 外加載荷軸線(xiàn)與軸承內(nèi)圈旋轉(zhuǎn)軸線(xiàn)的徑向和角度偏差(見(jiàn)表4)。
圖1 載荷軸線(xiàn)相對(duì)于軸承內(nèi)圈旋轉(zhuǎn)軸線(xiàn)的偏差
表4 載荷軸線(xiàn)相對(duì)于軸承內(nèi)圈旋轉(zhuǎn)軸線(xiàn)的偏差值
軸承外徑
D 與軸承內(nèi)圈旋轉(zhuǎn)軸線(xiàn)間的徑向偏差
H
max. 與軸承內(nèi)圈旋轉(zhuǎn)軸線(xiàn)間的角度偏差
β
max.
> ≤
mm mm (°)
10 25 0.2 0.5
25 50 0.4
50 100 0.8
100 140 1.6
140 170 2.0
170 200 2.5
6.3.4 傳感器的軸向位置和測(cè)量方向
傳感器的定位如下:
設(shè)定的軸向位置:在靜止套圈的外表面上且對(duì)應(yīng)于受載靜止套圈滾道與球接觸中部的平面上(對(duì)于靜止外圈,見(jiàn)圖2),軸承制造廠應(yīng)提供該數(shù)據(jù)。
說(shuō)明:
a——傳感器位置和方向。
b——軸向載荷方向。
圖2 振動(dòng)測(cè)量——傳感器設(shè)定的位置
另一種位置(深溝球軸承除外):位于靜止套圈寬度的中心,見(jiàn)圖3(這種測(cè)點(diǎn)位置可能會(huì)產(chǎn)生不同的振動(dòng)信號(hào))。
說(shuō)明:
a——傳感器位置和方向。
b——軸向載荷方向。
圖3 振動(dòng)測(cè)量——另一種傳感器測(cè)點(diǎn)位置
傳感器的位置確定后,允許的最大軸向位置偏差為:
——外徑D≤70mm時(shí):±0.5mm;
——外徑D>70mm時(shí):±1.0mm。
方向:垂直于旋轉(zhuǎn)軸線(xiàn)(見(jiàn)圖4)。在任何方向上與徑向中心線(xiàn)的偏差不應(yīng)超過(guò)5°。
a 在任何方向。
圖4 與徑向中心線(xiàn)的偏差
6.3.5 心軸
用于安裝軸承內(nèi)圈的心軸圓柱表面,其外徑公差應(yīng)符合ISO 286-2中f5級(jí)的規(guī)定,且具有最小的幾何誤差,確保心軸以滑配合裝入軸承內(nèi)孔中。
應(yīng)控制徑向和軸向跳動(dòng),以便不影響測(cè)試。跳動(dòng)應(yīng)采用ISO 15242-1:2015中附錄C給出的裝置進(jìn)行測(cè)量。
附錄A
(規(guī)范性附錄)
外加軸向載荷軸線(xiàn)對(duì)中精度的測(cè)量
加載機(jī)構(gòu)的偏移量是利用安裝在主軸(見(jiàn)圖A.1)支架上的兩個(gè)千分表進(jìn)行測(cè)量的,兩個(gè)千分表在軸向間隔一定的距離。主軸應(yīng)緩慢轉(zhuǎn)動(dòng),千分表可測(cè)量加載活塞的徑向跳動(dòng)。
由兩個(gè)千分表測(cè)得的徑向跳動(dòng)應(yīng)根據(jù)測(cè)試軸承的軸向位置加以校正,以便能夠與表4規(guī)定的極限偏差值進(jìn)行比較。
說(shuō)明:
1,2——千分表;
3——安裝千分表的支架;
4——心軸;
5——加載機(jī)構(gòu)。
圖A.1 外加軸向載荷對(duì)中精度的測(cè)量